196 resultados para MAJOR CYSTEINE PROTEASE

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was approximately 40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained approximately 45% activity when incubated at 37 degrees C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microdialysis enables the chemistry of extracellular ?uid in body tissues to be measured. Extracellular proteases such as the cysteine protease, cathepsin S (CatS), are thought to facilitate astrocytoma invasion. Microdialysates obtained from human brain tumoursin vivo were subjected to cathepsin S activity and ELISA assays. Cathepsin S ELISA expression was detected in ?ve out of 10 tumour microdialysates, while activity was detected in ?ve out of 11 tumour microdialysates. Cathepsin S expression was also detected in microdialysate from the normal brain control although no activity was found in the same sample. While some re?nements to the technique are necessary, the authors demonstrate the feasibility and safety of microdialysis in human astrocytomasin vivo. Characterisation of the extracellular environment of brain tumoursin vivo using microdialysis may be a useful tool to identify the protease pro?le of brain tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsin S is a lysosomal cysteine protease that has been shown to play a key role in MHC class II antigen presentation. Consequently, it has been extensively evaluated as a therapeutic target in autoimmune diseases, such as rheumatoid arthritis and psoriasis. Additionally, clinical and mechanistic evidence is emerging, revealing its inappropriate expression and secretion in a wide range of disease states including atherosclerosis and tumourigenesis. This review covers the known role and consequences of cathepsin S activity in these pathological disorders, highlighting various studies that have demonstrated its utility as a therapeutic target. This review also examines challenges that exist towards the development of agents that specifically target this protease and discusses the studies to date that have applied cathepsin S inhibitors in disease models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsins are known to have many important physiological roles and provide a viable target for inhibition. Fluorobenzoyl dipeptide derivatives were synthesized and tested for biological activity in an effort to find an efficient inhibitor of the cysteine protease cathepsin L. Thirty-six novel inhibitors (1-36) were synthesized from protected amino acids via the standard DCC/HOBt coupling protocol, containing a benzyl ester or a nitrile as an electrophilic warhead. The activity of the inhibitors was evaluated against cathepsin L and IC50 values calculated. Modification of both amino acids and terminal groups afforded compounds with single digit micromolar inhibition. Results utilizing the benzoyl-L-leucine-glycine nitrile backbone are comparable to that for the commercially available inhibitor 39.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys26 with Gly26, failed to autoprocess. However, [Gly26]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helminth pathogens prepare a Th2 type immunological environment in their hosts to ensure their longevity. They achieve this by secreting molecules that not only actively drive type 2 responses but also suppress type 1 responses. Here, we show that the major cysteine proteases secreted from the helminth pathogens Fasciola hepatica (FheCL1) and Schistosoma mansoni (SmCB1) protect mice from the lethal effects of lipopolysaccharide by preventing the release of inflammatory mediators, nitric oxide, interleukin-6, tumor necrosis factor alpha, and interleukin-12, from macrophages. The proteases specifically block the MyD88-independent TRIF-dependent signaling pathway of Toll-like receptor (TLR) 4 and TLR3. Microscopical and flow cytometric studies, however, show that alteration of macrophage function by cysteine protease is not mediated by cleavage of components of the TLR4 complex on the cell surface but occurs by degradation of TLR3 within the endosome. This is the first study to describe a parasite molecule that degrades this receptor and pinpoints a novel mechanism by which helminth parasites modulate the innate immune responses of their hosts to suppress the development of Th1 responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity towards serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4 nM - 27 nM). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pull-down experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2 and FhCL5. Substitution of the unusual P1 Leu15 within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu15/Arg15) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nM). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu15 in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity towards FhCL1, FhCL2 and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of synthetic peptides in which the C-terminal carboxyl grouping (-CO2H) of each has been chemically converted into a variety of ene dione derivatives (-CO-CH CH-CO-X; X -H, -Me, -OBut, - OEt, -OMe, -CO-OMe), have been prepared and tested as inactivators against typical members of the serine and cysteine protease families. For example, the sequences Cbz-Pro-Phe-CH CH-CO-OEt (I) which fulfils the known primary and secondary specificity requirements of the serine protease chymotrypsin, and Cbz-Phe-Ala-CH CH-CO-OEt (II) which represents a general recognition sequence for cysteine proteases such as cathepsins B, L and S, have been tested as putative irreversible inactivators of their respective target proteases. It was found that, whereas II, for example, functioned as a time-dependent, irreversible inactivator of each of the cysteine proteases, I behaved only as a modest competitive reversible inhibitor of chymotrypsin. Within the simple ester sequences Cbz- Phe-Ala-CH CH-CO-R, the rank order of inhibitor effectiveness decreases in the order R -OMe > - OEt >> -OBut. It was also found that the presence of both an unsaturated double bond and an ester (or a-keto ester) moiety were indispensable for obtaining irreversible inactivators. Of the irreversible inactivators synthesized, Cbz-Phe-Ala-CH CHCO- CO-OEt (which contains a highly electrophilic a-keto ester grouping) was found to be the most effective exhibiting, for example, second-order rate constants of approximately 1.7 106/M/min and approximately 4.9 104/M/min against recombinant human cathepsin S and human spleenic cathepsin B, respectively. This initial study thus holds out the promise that this class of inactivator may well be specific for the cysteine protease subclass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacteroides fragilis is a bacterium that resides in the normal human gastro-intestinal tract; however, it is also the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses, and the most common cause of anaerobic bacteraemia. Abscess formation is important in bacterial containment, limiting dissemination of infection and bacteraemia. In this study, we investigated B. fragilis binding and degradation of human fibrinogen, the major structural component involved in fibrin abscess formation. We have shown that B. fragilis NCTC9343 binds human fibrinogen. A putative Bacteroides fragilis fibrinogen-binding protein, designated BF-FBP, identified in the genome sequence of NCTC9343, was cloned and expressed in Escherichia coli. The purified recombinant BF-FBP bound primarily to the human fibrinogen Bß-chain. In addition, we have identified fibrinogenolytic activity in B. fragilis exponential phase culture supernatants, associated with fibrinogenolytic metalloproteases in NCTC9343 and 638R, and cysteine protease activity in YCH46. All nine clinical isolates of B. fragilis examined degraded human fibrinogen; with eight isolates, initial A-chain degradation was observed, with varying Bß-chain and -chain degradation. With one blood culture isolate, Bß-chain and -chain degradation occurred first, followed by subsequent A-chain degradation. Our data raise the possibility that the fibrinogen-binding protein of B. fragilis, along with a variety of fibrinogenolytic proteases, may be an important virulence factor that facilitates dissemination of infection via reduction or inhibition of abscess formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Opisthorchis viverrini is an important helminth pathogen of humans that is endemic in Thailand and Laos. Adult flukes reside within host bile ducts and feed on epithelial tissue and blood cells. Chronic opisthorchiasis is associated with severe hepatobiliary diseases such as cholangiocarcinoma. Here we report that adult O. viverrini secrete two major cysteine proteases: cathepsin F (Ov-CF-1) and cathepsin B1 (Ov-CB-1). Ov-CF-1 is secreted as an inactive zymogen that autocatalytically processes and activates to a mature enzyme at pH 4.5 via an intermolecular cleavage at the prosegment-mature domain junction. Ov-CB-1 is also secreted as a zymogen but, in contrast to Ov-CF-1, is fully active against peptide and macromolecular substrates despite retaining the N-terminal prosegment. The active Ov-CB-1 zymogen was capable of trans-activating Ov-CF-1 by proteolytic removal of its prosegment at pH 5.5, a pH at which the Ov-CF-1 zymogen cannot autocatalytically activate. Both cathepsins hydrolyse human haemoglobin but their combined action more efficiently degrades haemoglobin to smaller peptides than each enzyme alone. Ov-CF-1 degraded extracellular matrix proteins more effectively than Ov-CB-1 at physiological pH. We propose that Ov-CB-1 regulates Ov-CF-1 activity and that both enzymes work together to degrade host tissue contributing to the development of liver fluke-associated cholangiocarcinoma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells.

Methods: CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion.

Results: Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen.

Conclusion: HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.